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Abstract
Background: Endosulfan, an organochlorine compound, and fipronil, a 
phenylpyrazole, are insecticides with a common mechanism of toxicity. They 
interfere with Cl- influx by binding to the gamma-aminobutyric acid receptor 
(GABAAR) and blocking the inhibitory actions of GABAA. In vivo they cause 
neurotoxicity, hepatotoxicity, developmental toxicity, and can alter endocrine and 
immune systems. The thyroid is a target of fipronil toxicity. Human exposure occurs 
via food residues, skin contact and/or air dispersion. They are environmentally 
persistent and bioaccumulate in food chains. 

Method: Compare in vivo data with in vitro results from the U.S. Environmental 
Protection Agency (USEPA) Toxicology Forecaster (ToxCast) high-throughput 
screening assays and zebrafish models to assess their usefulness in predicting 
toxicity. 

Results: Fipronil’s in vivo toxicity occurred at lower doses than endosulfan for 
similar effects. ToxCast was a weak predictor of liver toxicity and estrogen receptor 
interaction. Missing is evidence of “true actives” for fipronil ToxCast assays with 
the thyroid receptor and for either compound with GABAAR or androgen receptors. 
Zebrafish models were good predictors of endosulfan and fipronil neurotoxicity in 
mammalian in vivo studies.

Conclusion: ToxCast assays do not provide support for in vivo neurotoxicity or 
endocrine disruption where zebrafishs are good predictors of both parameters.
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Introduction
Endosulfan (ES: 6, 7, 8, 9, 10, 10-hexachloro-1, 5, 5α, 6, 9, 
9α-hexahydro-6, 9-methano-2, 4, 3-benzodioxathiepin-3-oxide; 
[isomers: α‑; β‑]) and fipronil (FP: (RS)-5-amino-1-[2,6-dichloro-4-
(trifluoromethyl)phenyl]-4- (trifluoromethylsulfinyl)-1H-pyrazole-
3-carbonitrile) represent the first and second generations, 
respectively, of chloride channel blocker insecticides whose 
primary target is the central nervous system [1, 2]. High potential 
for human exposure is indicated for both pesticides. Exposure to 
general public results from ingesting residues in food, inhaling 
vapors, skin contact. Workers’ exposures are mainly dermal 
and inhalation from handling or re-entering treated fields.A 
large number of poisonings are reported from fipronil’s use in 

veterinary products for flea and tick control. The exposure is 
likely higher for general public living near hazardous waste sites 
where endosulfan has been detected [3, 4]. As noncompetitive 
antagonists of the GABAA-receptor, they block passage of Cl- 
ions and thereby the actions of the inhibitory neurotransmitter 
GABA [2]. In mammals, seizures, vomiting and convulsions are 
symptoms of excessive nerve stimulation associated with GABAA 
antagonism [5]. Their action in the brain is very complex due to 
biotransformation to toxic metabolites that can act on GABAAR 
(e.g., FP sulfone [6]). Each is detoxified by P450s (CYP2B6, CYP3A4-5: 
ES; hCYP2C9: FP) [7, 8] but neither requires activation to be toxic8.
ES and FP are associated with endocrine disruption. FP has induced 
thyroid and liver cancer in animal models (http://www.cdpr.ca.gov/
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docs/risk/toxsums/toxsumlist.htm; accessed 9/2015) [9]. These well 
characterized in vivo effects provide a basis for comparing toxicities.

Another means of comparison is the U.S. Environmental Protection 
Agency (USEPA) Toxicology Forecaster (ToxCast) in vitro high-
throughput screening program; profiling more than 1,000 chemicals 
(~ 800 assays http://actor.epa.gov/dashboard2/; accessed 9/2015). 
In addition, zebrafish models are a rapid in vivo method for assessing 
developmental effects [10-13]. The goal of this brief communication 
is to examine if ToxCast and zebrafish results were predictive of 
targets and activities relevant to in vivo ES and FP endpoints.

Method
In vivo studies
In vivo studies in Table 1 summarize relevant neurotoxic or 
endocrine disrupting effects for both chemicals. No-Observed-
Effect-Levels (NOEL) and Lowest-Observed-Effect-Levels (LOEL) 
were established by the California Department of Pesticide 
Regulation from guideline studies required for pesticide 
registration (http://www.cdpr.ca.gov/docs/risk/rcd.htm) and 
from open literature.

In vitro studies
We accessed the recently updated ToxCast database (http://
actor.epa.gov/dashboard2/) for active assays that could inform 
effects manifested in overt toxicity in in vivo studies.

Zebrafish studies
Data from two published methods included embryos treated 
with chorion intact [10, 11] or with chorion removed [12, 13].

In vivo to in vitro extrapolation (IVIVE)
IVIVE was used to convert zebrafish NOELs expressed as µM 

concentrations into oral equivalent doses (OED: mg/kg/d). 
Estimated pharmacokinetic data derived from linear regression, 
published in vitro hepatic metabolism and protein binding with 
rat data are used for the conversion [14].

Results
In vivo
Both insecticides were neurotoxic [15, 16] with LOELs of 2-2.5 
mg/kg/d in rats and dogs (Table 1). ES developmental effects in 
rat pups and fetuses occurred at up to 7-fold higher doses than 
FP. Potential endocrine disruption was shown in both compounds 
by developmental delays and skeletal variations. Liver effects 
in rats and mice at LOELs of 3.95 mg/kg/d (ES) and 0.13 mg/
kg/d (FP) included increased liver weights and hepatocellular 
carcinomas in mice (FP [17]). FP thyroid toxicity was evident by 
altered thyroid function and follicular cell adenomas in rats (LOEL 
0.06 mg/kg/d) [18].

ToxCast data
Results are reported as AC50s (½ maximal activity concentrations: 
Dashboard: http://actor.epa.gov/dashboard/2.All active assays 
appear in Figure 1 (dots) to the right and left of the cytotoxicity 
limit; however true actives have AC50s below the cytotoxicity 
limits (e.g. < 4.56 uM: ES; < 4.7 uM FP). Active assays beyond 
the cytotoxicity limit may not be specific to a chemical-receptor 
interaction but represent a burst of cellular responses indicative 
of cytotoxicity. ES true actives were assays having to do with 
xenobiotic metabolism (human constitutive androstane receptor: 
hCAR; immune response: DR5; pregnane-x: affecting hCYP2B6 
genes; hCYP3A4 xenobiotic response element: PXRE) and the 
estrogen receptor (ERα; estrogen response element: ERE). True 
actives for FP were related to cell adhesion molecules (kinases), 
hCYP2C9, xenobiotic metabolism (hCAR) and ERE. Figure 2 shows 

ES (A) and FP (B) active ToxCast assays.Figure 1

 

      (A) Endosulfan                                                           (B) Fipronil  

The red line indicates the region where cytotoxicity begins. True actives are to the left of that line; to the right cytotoxicity increases 
with increasing Log AC50s. AC50 = activity at ½ maximal concentration.

http://actor.epa.gov/dashboard2/
http://www.cdpr.ca.gov/docs/risk/rcd.htm
http://actor.epa.gov/dashboard2/
http://actor.epa.gov/dashboard2/
http://actor.epa.gov/dashboard/2
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active versus inactive assays and associated components for each 
compound (abbreviations at: http://www.epa.gov/comptox/
toxcast/data.html). 

Zebrafish data
Zebrafish had an AC50 of 1 µM after exposure to ES (chorion 
intact) [10]; with a Toxicity Score (all malformations) of 40 
(highest possible score) at peak concentrations (4 µM). When 
embryo chorions were removed, ES was highly toxic to larval 
development at > 0.0064 µM [12]. ESα-treated embryos (chorion 
intact) showed neurobehavioral effects (abnormal swim behavior, 
disorientation, abnormal touch response) at > 1.0 µM (NOEL 0.5 
µM) [22].

FP-treated zebrafish (chorion intact) had an AC50 of 15.5 µM 
with a “Toxicity Score” of 40 [10]. Without the chorion, however, 
FP had no effects on development [10]. Zebrafish (chorion 
removed) treated with FP at > 0.23 µM had irreversible effects 
on body length, notochord degeneration, abnormal axial muscle 
morphology, muscle fiber degeneration [11].

IVIVE for ES neurotoxicity in zebrafish (chorion removed) [13] 
estimated an OED of 0.019 mg/kg/d (0.5 µM NOEL) [9]; 25-fold 
lower than the neurotoxicity NOEL in dogs (0.5 mg/kg/d) (Table 
1) [15]. For FP the zebrafish OED was 0.37 mg/kg/d based on 
neurotoxicity at 23 µM [13]. This OED is equivalent to the in vivo 
NOEL (0.2 mg/kg/d) from an acute neurotoxicity rat study [16].     

Discussion/Conclusion
Data indicate that in vivo, FP’s toxicity occurred at lower doses 
than ES (Table 1) for parameters examined. It is classified as a 

“possible human carcinogen” based on thyroid tumors in rat. 
ToxCast true actives for CYPs (ES: hCYP2B6 & hCYP3A4; FP: 
hCYP2C9) correlated well with in vivo toxicity [7, 8]. Other true 
activities for ES and FP were for generalized liver enzyme activity, 
which could be predictive of liver toxicity observed in vivo.

Missing were true actives for the GABAAR ToxCast assays (0/5 
total) for either compound. Since neither compound needs 
metabolic activation to be toxic, the inactivity could be due to 
a lack of adequate assay design.

ES had 2/18 total true estrogen-receptor actives and FP had 
1/18. There were no true actives for the androgen receptor 
(0/11 total) and (especially for FP) the thyroid receptor (0/4 
total). There was activity for ER, AR and TR (http://actor.epa.
gov/dashboard/2) but only above the cytotoxicity limit). There 
was poor correlation between in vivo endocrine disruption from 
both chemicals and true actives with ER, AR and TR in ToxCast.

Zebrafish assays were useful for predicting developmental 
neurotoxicity. The OEDs reasonably correlated with NOELs 
observed in vivo: (ES: 25 fold difference; FP equivalent). With 
the continued rapid development of the ToxCast and zebrafish 
assays, they could be used to support modes of action and 
adverse outcome pathways for new chemicals.

Disclaimer
The opinions and conclusions expressed in this paper are those 
of the authors and do not necessarily represent the views or 
opinions of the Department of Pesticide Regulation. The authors 
state that their design and interpretation is not compromised by 
any sponsor as a condition of review and publication.

 

(A) Endosulfan                                                        (A) Endosulfan                                                         

Proportion of active to inactive ToxCast assays by parameter measured.Figure 2

Red indicates assays considered active and blue is for inactives.

http://www.epa.gov/comptox/toxcast/data.html
http://www.epa.gov/comptox/toxcast/data.html
http://actor.epa.gov/dashboard/2
http://actor.epa.gov/dashboard/2
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Toxicity Endpoint Endosulfana NOEL/LOELb 
mg/kg/d Fipronila NOEL/LOELb mg/

kg/d
Fold Difference 
Endo:Fipronilc

Neurotoxicityd

Dog: Jerky/tonic muscle 
contractions, convulsive 

movements, noise sensitivity, 
frightened reactions to 

optical stimuli, impaired 
reflex excitability

Dog: 0.5/2.0d 15
Rat adult: Exaggerated startle & tail-pinch 

response; convulsions, tremors, ↓vision; ↓ 
hindleg landing splay, ↓ rearing

Rat: 0.2/2.516 ↓1.0

DNTe

i.p.

Rat pup: ↓ neurotransmitter 
binding; ↑foot-shock fighting 

behavior

Rat pup: 1.0/4 

19

Rat pup: ↓Startle response; ↓ability to 
swim (unable to stay afloat, swim in straight 

line, or keep heads out of water)

Rat pup: 
0.05/0.922 ↑4.0

Thyroid 
Pathology/ 

tumorsd 
No effects in any study Not Applicable

Rat adult: follicular cell hypertrophy & 
hyperplasia; altered thyroid function (↓T4, 
↑TSH); ↑thyroid weight; ↑follicular cell 

adenomas and carcinomas

Rat: 0.02/0.0617 Not Applicable

Liver Pathology /
tumorsd Rat adult: ↑liver weight Rat adult: 

1.92/3.9520
Mouse adult: ↑liver weight; periacinar 

vacuolation; hepato carcinomas
Mouse: 

0.06/0.1318 ↑30

Developmentald

Rat fetus:↓bodyweight, 
↓ %live fetuses & 

length;↑growth retardation, 
skeletal anomalies, % 

resorptions

Rat adult: 
2.0/6.021

Rat fetus: ↓litter survival, pup viability; 
delayed pinna attachment, incisor eruption, 

vaginal patency & preputial separation
Rat: 0.05/0.923 ↑7.0

a-Lowest No-Observed-Effect-Level (NOEL) for each category. 
b-NOEL/Lowest-Observed-Effect-Level (LOEL)
c-Fold difference between the lowest LOELs (where effects are observed at the lowest dose administered): Fold difference =  endosulfan LOEL : 
fipronil LOEL
d-Endosulfan or fipronil administered orally
e- Developmental Neurotoxicity; i.p. = intraperitoneal administration of endosulfan; oral administration of fipronil

Table 1 Toxicity Reported in California Department of Pesticide Regulation Risk Assessment Documents and the Open Literaturea [15-23].
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